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The evolution of vortex structure in the vicinity of a pattern defect or dislocation, 
generated experimentally by forcing a high Reynolds number mixing layer, is 
studied using a new two-dimensional wavelet transform called Arc. This transform 
localizes spectral information in physical space - as all wavelets do - but is not, 
direction-specific in wavenumber space. Various types of forcing, including forcing at 
the fundamental and subharmonic wavenumbers, produce a range of mixing-layer 
responses. The most significant finding is that a dislocation site acts as a nucleus and 
initiates a rapid, localized evolution to larger scales. The area of the 1ocaliKed ‘patch ’ 
grows approximately as the square of downstream distance. Defect-initiated patches 
bear generic similarities to the disturbed regions in cylinder wakes - commented 
upon recently by many researchers and in particular to  the A-structures described 
by Williamson (1  992). 

1. Motivation for the present study 
1.1. Earlier work on vortex patterns 

A typical high Reynolds number free shear flow of technological interest may contain 
four or more decades of scales. The smaller scales - the inertial subrange and beyond 

~ may develop a measure of independence from the particular geometry in which 
they arise. But larger scales remain constarltly in contact with the external 
boundaries of the flow : these scales define the global geometry of the turbulent zone. 
Such flows often possess a homogeneous direction in which neither boundary 
conditions nor stream properties vary. There is a strong tendency for the large-scale 
structure to reflect this independence, but, of course, not perfectly. How these largest 
features exhibit three-dimensionality is the subject of the present study. 

In an earlier paper, Browand & Troutt (1980) determined the correlation between 
velocity probes separated along the span. As the flow proceeded downstream, the 
physical separation required to achieve a fixed level of correlation first decreased by 
about a factor of three. Beyond a downstream position of 6-8 unstable wavelengths, 
the separation length began to increase as a linear function of distance. This linear 
increase in the lateral scale is not surprising. The simplest turbulent scaling requires 
linear growth for the largest scales not directly influenced by viscosity. The 
geometric structure which gives rise to the result consists of concentrations of 
vorticity (simply vortices), which are long cornpared to tho correlation wale. I n  this 
linear growth region, it was observed that tho vortices become distorted and 
intertwined ovrr a portion of their spanwise extent. That is. vortt:x pairing is a three- 
dimensional process. At any moment, typical vortices have paired only over it 
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Y ~ G U R E  1. Pattern dcfect in the instability wave field with no forcing. The display is a two-level 
contour plot of the velocity fluctuation u' at 1.2 wavelengths downstream. Eleven simultaneous 
measurements are made across span a t  a vertical position +0.4S above the flow centreplane. 

portion of their spanwise length. The result is an overall structure consisting of a 
continuous progression of Y-branched vortices (Browand 1986 ; Browand & Ho 
1987). This state was described as helical pairing by Chandrsuda et al. (1978), and was 
given additional support by the stability study of Pierrehumbert & Widnall (1982), 
and the numerical studies of Corcos & Lin (1984). 

The origin of the branching in the first few wavelengths has been explored more 
recently by Browand & Prost-Domasky (1990). It was discovered that branching 
arises very early in the process of natural transition, and long before any pairing 
takes place. (Natural transition is taken to mean that no overt excitation has been 
imposed, so that transition arises as a result of the broadband, low-amplitude 
disturbances always present in experiments.) At a distance of 1.2 instability 
wavelengths downstream, features described as pattern defects had already appeared 
in the vortex structure. (Signal levels a t  this point were only a few percent of the free- 
stream velocity, and no measurements could be made closer to the plate trailing 
edge.) A typical measurement is shown in figure 1, which maps wave crests of the 
disturbance field as a function of span and time. It was concluded that defects arise 
in the unstable wave field as a consequence of the large spanwise extent of the flow 
and the relatively broadband character of the natural excitation. Slightly different 
frequencies (different wavelengths) were presumed t o  arise and grow simultaneously 
over different portions of the span. These developing 'vortex patterns' can never 
match perfectly, and dislocations as in figure 1 are the necessary result. 
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1.2. Scope of the present study 
It is impossible to follow the evolution of a single defect as i t  travels downstream - 
at  least not' with hot wires in a wind tunnel. One alternative is to produce a series of 
defects by means of acoustic forcing. Since the individual members in a series of 
acoustically forced defects are observed to be nearly identical, the evolution of a 
single defect can be reconstructed with reasonable approximation by the super- 
positlion of many defect passages. Three distinct' types of forcing are employed. The 
first consists of forcing atJ two frequencies .fi and f 2  = f i+ lo%,  where fi is the 
natural, most unstable frequency. We imagine this forcing to correspond most 
closely to the unforced, natural evolution. H e d t s  for this case are also discussed in 
Yang et al. (1993). Here, two other cases involving subharmonics are also considered 
- one in which the subharmonic t f 2  is applied, and one with application of both f1 

and !jf,. Typical results for the three forcings are shown in figure 2 for two stations 
- the first a t  1.2 wavelengths and the second at  3.0 wavelengths downstream. The 
longitudinal fluctuation field is shown as a function of time (vertical coordinate) and 
span (horizontal coordinate). The right and left columns correspond respectively to 
the two measurement positions : y = + 6 above the flow centreplane on the low-speed 
edge, and y = -6 below the flow centre-plane on the high-speed edge. (6 is the 
inixing-layer thickness.) Each field is constructed as a superposition of twenty 
individual defect passages (sixty span measurement positions using a three-hot-wire 
array moved laterally). Solid lines correspond to positive fluctuation ; dashed lines 
correspond to negative fluctuation. The small-scale wiggles that are evident along 
the wavefront are near the Nyquist scale arid are a measure of the variations to be 
expected among the individual members of the superposition. 

The resulting flow developments depicted in figure 2 ( a )  are surprising. I n  the 
absence of explicit subharmonic forcing, the region surrounding the defect is the 
most active portion of the mixing layer, and is the site of a' local scale change to  larger 
scales. The scale change is just beginning a t  three wavelengths downstream. The 
same features are present in the patterns recorded above and below the cent,replane. 
The vicinity of the defect is the region of lowest amplitude for the fundamental 
pattern. Thus, subharmonic scales first appear where the fundamental pattern is 
weakest and not where it is strongest. Nonlinearity is not always associated with the 
largest-amplitude disturbances. 

Figure 2 ( b ,  c)  suggest that  the localized process can be significantly altered by the 
imposition of additional subharmonic forcing. The subharmonic is most clearly 
present over a region of larger extent when $ fi and +,f8 are both applied, as in figure 
2 (c). This is to  be expected. The subharmonic content is also more evident on the low- 
speed edge of t h e  flow (right pant:ls in figure 2 b , c ) .  There is no fundamental 
difference in viewing the process from either of the two edges, but the subharmonic 
development on the high-speed side lags developrncnt on the low-speed side. At 3.5 
wa,velengths downstream the .pattern on the high-speed side closely resembles the 
right panel of figure 2(c). 

The quantitative characterization of such a localized scale change i R  not simple. In 
fact, it motivated our interest, in the wavelet transform, which is precisely suited to  
perform il localized Fourier analysis. A new, non-direction-specific wavelet - termed 
t,he Arc wavelet -was developed for data analysis. The Arc wavelet transform will 
resonate with localized wave energy irrespective of the physical orientation of the 
wave field. This and many other useful properties are described in Dallard & 
Spedding (1992). I n  a related paper, Spedding, Dallard & Browand (1991) briefly 
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FIGURE 2 (a). For caption see facing page. 

compare the performance of several common wavelet transforms applied to the 
turbulent shear flow and to large, homogeneous, two-dimensional turbulent fields. 

Because the present analysis depends so heavily upon an understanding of this 
relatively new technique, the main features of the Arc wavelet transform will be 
described in $2. Section 3 discusses the experimental set-up, and details of the forcing 
technique. Sections 4-6 contain the principal results and a discussion. 
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FIMJitE 2 .  Two-level contour plot of velocity fluctimtion, 'u'. Right column : y = 8 above the 
ccntreplane (low-speed edge); Left column: y = -8  below the centreplane (high-speed edge); (a) 
casc I (forcing atf, andf,+ 10% = j , ) ,  upper row x = 1.2h, lower row z = :<.Oh; ( b )  case IT (forcing 
atjl,fz and +JJ, r = 3.0h; ( c )  case T11 (forcing at.f;,fi, ijl and kf,), x = 3.Oh. Solid lines are poxitve 
fhtuiztion, dotted lines are ncgativc! fliiotuation. 
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2. The wavelet transform 
2.1. Elementary properties of wavelets 

The wavelet transform off in (a ,  b)  is the projection of the function f on the wavelet 
ga9b generated from a mother wavelet after translation b and dilation a. For data 
analysis, the mother wavelets frequently used include: the second derivative of a 
Gaussian (the Mexican hat, a real function); an oscillation contained within a 
Gaussian envelope (the Morlet wavelet, a complex function). I n  two dimensions, the 
general definition is 

The wavelet g satisfies 

JJlg(r)lldr < +a. 

The scaling factor l / a 2  is consistent with the requirement that  

J[ lga ,b l ( r )  dr = JJM ( r )  dr. (3) 

There are other possible scalings (e.g. Mallat 1989; Farge et al. 1990; Farge 1992). We 
can also give an alternative interpretation of (1) by taking the Fourier transform in 
the integral (Theorem of Parseval) : 

where !is the Fourier transform off. For a given wavelet, i(ak) is known, and (4) 
provides a useful interpretation as well as a straightforward means for computing 
wavelet transforms. 

The wavelet transform must also possess an inverse. This requires that the 
constant C, exist : 

It is equivalent to the condition that the average of g vanish or g(0) = 0. 
A useful property derivable when (5) is met, is the isometry relationship: 

wheref" is the wavelet transform off with g,, after a rotation (angle a )  of g in the 
physical plane. A non-direction-specific wavelet (&k) = &k)) is better adapted for 
the interpretation of experimental results (e.g. Dallard & Spedding 1992). In such a 
case, there is no rotation needed, and 

(7)  

with 
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and p = 2 in the case of a Hardy wavelet (as with Arc, see §2.2) ,  or p = 1 in the 
general case of a cylindrical wavelet (as with Halo, $2.2). 

Setting fi = f z  = f, gives an expression for the total energy of the function f: 

The quantity (,u/Cg) 1 fw(a, b)(' can be regarded as a spatial energy density (energy 
per unit area) a t  the scale a (per unit d(1na)). We will eventually compare energy 
densities for different ranges of scale a. 

2.2. The Hardy space wavelets : Morlet2D and Arc 

Returning for a minute to one dimension, the concept of envelope amplitude and 
phase can be extended to a function f ( t )  containing more than a single frequency 
component by constructing a complex function having the original f(t) as the real 
part, and having imaginary part equal to the Hilbert transform of f ( t )  : 

(10) W )  = f ( t )  - =i(f ( t ) ) .  
Thus the modulus, [ f z  + H,( f )']It, is the instantaneous envelope amplitude and the 

instantaneous phase is $ = tanp1( - H 2 ( f ) / f ) .  It is easily shown that 

w < O = d ( W )  = 0. (1') 

Functions satisfying (11) are termed Hardy functions, or are said to occupy Hardy 
space: F E  X .  For wavelets such that g €2, the wavelet transformf,(a, b)  (the scale 
a being fixed) exists in % also. 

The separation of envelope amplitude and phase is a useful analysis tool for one- 
dimensional signals. (For example, it allows the simple separation of amplitude 
modulation and phase or frequency modulation.) It is even more useful in several 
dimensions where phase information alone may reveal patterns at  certain scales - 
even in the presence of significant noise. However, the concept of a Hardy function 
is not uniquely extendable to two dimensions; thus there is considerable latitude in 
deciding how this extension might be accomplished (Dallard & Spedding 1992). 

One extension (for the Morlet wavelet of Grossman & Morlet 1984) is to assign a 
spatial orientation to the wave packet, creating Morlet2D : 

and 

g,(r) = exp (ik, r )  exp ( -  lr12/2a2) 

d,(ak) = exp (-$[a2a2(k-k,/a)2]), 

where the product cJk,J = ah, determines the number of waves in the packet (often 
chosen to be rrk, - 5 ,  so that the admissibility condition i(0) = 0 is almost satisfied) 
and tl is the orientation of the vector k,. The Morlet2D is shown in wavenumber 
space in figure 3(a) for a = 0). To cover the wavenumber plane using MorletBD, many 
values of a must be chosen. When there is a clearly perceived directionality to the 
space pattern, f ( r ) ,  the appropriate a is known and a single value may be sufficient. 
Often, however, the pattern is obscured or may have different orientations at 
different scales (as in our case). A wavelet possessing additional symmetry in the 
physical plane, so as to be sensitive to f(r) containing waves of many orientations, 
would be most useful. In wavenumber space, the proposed wavelet should thus 
possess a Fourier transform providing maximum coverage of the plane as the 
parameter a varies. A class of symmetric wavelets has the Fourier transform 

&ak) = d(alc) = exp ( - ~ [ U ~ ~ ~ ( E - L ~ / ~ ) ~ ] ) ,  (14) 

I 2  F L U  247 
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FIGURE 3. (a) The Fourier transform in [k,,k,] of: (a) MorletPI); (b )  Halo; (c) Arc. 

FIGURE 4. Representation of the Arc wavelet in space coordinates [z, y] : 
(a )  real part ; ( b )  imaginary part. 

as shown in figure 3 ( 6 ) .  It will be referred to as the Halo. The Halo is displaced from 
the origin by radius k,/a and has breadth l / ( r a )  along a radial direction in the 
k-plane. As the wavelet scale varies, the entire k-plane is covered. However, the 
resulting wavelet transform is purely real, without the useful property of phase and 
envelope amplitude separation. To create phase and amplitude information, one 
must ensure gaJr) exists in X ,  which means restricting the contributions of g(k) to 
a half-plane. Such a possibility is shown in figure 3 ( c ) .  This is an example of the Arc 
wavelet. The Arc depicted here has the Fourier transform 

j ( k )  = $ ( k )  = exp ( -+[a2r2(k-k , /a)2] )  if k ,  > 0, (15) 

&k) = 0 if k, < 0. (16) 

The Arc wavelet is illustrated in figure 4 (a ,  b )  in space coordinates. The real part of 
the wavelet is axisymmetric and diminishes rapidly away from the origin. The 
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imaginary part is not symmetric and is not as well localized in space. Although the 
bulk of the wavelet consists of a collection of peaks near the origin, a ‘tail ’ 1s seen 
to extend preferentially along the y-axis. The orientation of the tail is related to the 
orientation of the Arc in wavenumber space, and the magnitude is related to the 
sharpnesR of the cutoff near k2/ = 0. Some degree of asymmetry is the price one pays 
for the convenience of defining a complex wavelet. These peculiarities should be kept 
in mind, but they do not diminish the utility of the transform. Wavelet energy is still 
highly localized in space - 92.5% of the Arc wavelet energy is contained within a 
circular distance of radius 4 2 a  from the origin, while the Morlet wavelet contains 
86.5 % for the same radius. When possible, however, the partition should be made in 
wavenumber space along a direction for which the field under analysis, f ( k ) ,  contains 
small contributions (Dallard & Spedding 1992). 

3. Experimental arrangement ; analysis procedures 
3.1. Th,e space-time data set 

The mixing layer is produced in a wind tunnel having geometry and dimensions 
sketched in figure 5(a ) .  The turbulent region to be studied exists immediately 
downstream from the splitter plate dividing the two streams of speeds U, = 
16.5 m/s and U, = 5.8 m/s, respectively. The non-dimensional speed ratio 
R = ( Ul - U,)/( ri, + U,) = 0.48. The initial flow structure is forced acoustically 
utilizing a pulse train of finite duration applied to sixteen loudspeakers arranged 
along the span in the wind tunnel ceiling. Direct measurement of the pressure field 
at the splitter-plate trailing edge verifies that the acoustic velocities here are of the 
order of a few millimetres per second. Thus the level of forcing, expressed as a 
fraction of the maximum flow velocity, is 1-2 x This small forcing is sufficient 
to impose local order upon the growing instability. 

The longitudinal velocity fluctuation is measured as a function of span by 
translating a rake of three hot wires positioned along the span (see figure 5a) .  The 
imposed acoustic pulse train provides the origin in time; repetitions of the train 
produce (nearly) identical flow responses. After each repetition, the hot-wire rake is 
moved laterally until a matrix of sixty span locations has been accumulated (a 
superposition of twenty separate repetitions). The total span covered is 40.2A,, where 
A, is the wavelength of the forced wave: A, = 1.79 cm. (It is within a few tenths of 
a per cent of the most unstable wave in the developing flow, observed to arise 
naturally in the absence of any forcing.) The spanwise separation between 
measurement points is 6z = 1.2 cm. At  each span position, a time series is recorded 
for the interval AT = 10246t (St = 80 ms). A space-time series x-t is thus accumulated 
at each of twelve downstream locations from Rxlh, = 0.3 to 3.6 in increments of 0.3. 
For each span position and each downstream location, the means have been 
subtracted and the signal levels normalized by the signal in a time interval 2006t 
beginning at approximately 2006t. This region is unaffected by the presence of the 
defect, and is later referred to as the external region. When moving from one 
downstream position to the next, the hot-wire array is fixed along the ray y/x = 0.15, 
corresponding to a location about one maximum slope thickness about the 
centreplane of the layer (on the low-speed side). Being near the outer edge of the 
mixing layer ensures sensitivity to the largest scales in the flow, and decreases 
sensitivity to the smaller scales. This is an important point. The data do not contain 
smaller-scale fluctuations which are certainly present in the interior of the mixing 
laycr. The phenomena observed here are not sensitive to the precise hot-wire 

12-2 
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(ii) 9 
! 11 cycles with subharmonic ! 

I o cycles I 

! 11 cycles with subharmonic ! 
LOTI -4 

1 10 cycles with subharmonic 

FIGURE 5. (a)  Sketch of the wind tunnel experiment. (b )  The three sets 
of pulse trains utilized in the acoustic forcing. 

location. Figure 2 contains data recorded on the high-speed side of the mixing layer 
at approximately the same distance from the central plane (y/x = k0.15). Aside 
from the expected phase shift of 180°, the images recorded on either side are quite 
similar. 

3.2. Details of the acoustic forcing 
The forcing is produced by two separate trains of fixed-amplitude pulses. The two 
trains have the same total time length. The first twenty pulses and the last twenty 
pulses are identical, but the middle ten pulses are different. Three distinctly different 
combinations are utilized, as sketched in figure 5 ( b ) .  Case I is the simplest. For train 
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1 ,  all fifty pulses of period are identical. The duty cycle is one-half, and the 
frequency, fl, is 623 Hz. The most amplified frequency in the naturally developing 
laminar flow is 625 Hz. In the interior interval, l O T , ,  train 2 contains eleven pulses 
(corresponding to a frequencyf, = 685 Hz), 10% higher thanf,. Train 1 is applied 
to eight speakers on the right half of the tunnel, and train 2 is applied to the eight 
left-half speakers. The result of the forcing is the defect in structure shown in figure 
2 ( a )  at Rx/A, = 0.6. 

For case 11, train 1 is identical to case I. But to train 2, the subharmonic off, is 
added in the interior interval lo?. This is accomplished by modulating the pulse 
width. Each pulse is alternately lengthened or shortened by 27% of the original 
length, and might be expected to produce a subharmonic component shifted forward 
in phase by perhaps 0.10q (cf. Monkewitz 1988). For case 111, all pulses of width 
in trains 1 and 2 are pulse-width modulated to include the subharmonic of fl (in 
addition to the subharmonic of fi). 

3.3. Utilizing the Arc wavelet transform 
For each of three forcings and for each of 12 downstream positions, we have a two- 
dimensional data array (time x span) having dimension (51T, x 40.2h1), where T,  is 
the period corresponding to t i  (q = 0.001605 s = 20.0683) represented by (1024 x 60)  
points. We isolate a smaller array containing 512 time points centred on the original 
defect as it advects downstream at speed 0 = i( U, + U,). Only 55 span points are kept 
to avoid unwanted influence from the sidewalls. Since it is convenient to work with 
an array of larger z dimension, the span array is expanded to 256 points by 
performing a spline interpolation along for each time step. (Fourier transforms of 
the two data sets show no significant differences. A t  low wavenumbers, where there 
is significant energy, the spectral amplitudes are different by O(5 x on a scale 
of unity. A t  higher wavenumbers, the differences are 0(10-3-10-4), of the order of the  
noise components in the raw data.) Thus the wavelet transform is applied to 
( N  = 512 x M  = 256) points corresponding in (time x span) to (25 .5q  x 3 7 4 ) .  Notice 
that the array is distorted. An equivalent convection length is 6X = USt. A capital X 
is used here as a reminder that X is an equivalent lengthscale and not the physical 
dimension x. Then = 20.06St correspond to an equivalent space discretization 
A,  = 20.06SX. Since A, = 6.9282 (after interpolation), Sz and SX are in the ratio 
6z = sSX, 5 = 2.90. This scale ratio must be incorporated in the wavelet transform to 
ensure that two-dimensional space is treated consistently. 

It is necessary to be specific about the choice of values for the scale parameter a. 
The procedure is illustrated with the Arc wavelet, although the argument is perfectly 
general. The principal wavenumber vector for the fundamental pattern lies close to 
the k ,  axis. It is convenient to take the partition well away from this direction 
(Dallard & Spedding 1992) : the choice will be to put the partition along the k,  axis. 
The Arc wavelet used is given by 

&ak) = exp ( -i[a2a2(lc- k , /a)2])  if Ic,  > 0, (17) 

g(ak) = 0 if k ,  < 0. (18) 

It is also convenient to express all physical scales r ,  k, k,, in terms of the 
fundamental space (time) unit 6X (dt).  This choice effectively fixes the value of c, 
c = SX (St). The choice ak ,  = 5.5 is also made, to give k,  = 5.5/SX. Arc is then 
completely defined. 
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The data set possesses a pattern a t  the fundamental wavelength A,, corresponding 
to wavenumber I%, = 27c/A,. This value corrsponds to a scale a, given by 

kohl A a = 2 = __ N (0.875)'. 
IC, 2n SX 

Since for our data A, = 20.06SX (St implied), the corresponding resonant scale is 

a1 = (0.875) 20.06 = 17.56. (20) 

The smallest scale resolvable in the data is A,, = 2SX, a result of the Nyquist 
criterion. The smallest value of a ,  amin, needs be no smaller than amin = 1.  

To choose the spacing of a values, recall that the Arc wavelet interrogates a region 
of wavenumber space of size l /aa about the value ko/a. Discrete values of &/a need 
not be spaced closer than, say, S(ko /a )  = 1/(4va) leading to the result 

da/a = a/ (4k0  a). (21) 

The number of required values per octave, m, is simply 

m = 4k0a1n2, (22) 

which is close to 16 for k, = 5.5/6X. A rule of thumb would be 16 scales per octave 
(spaced logarithmically) for as many octaves as are required to span the data. 

3.4. Cones of injiuence 
The wavelet transform fw(a ,  b)  resides in the physical parallelepiped 

6X < b, < N6X, 

SX < b, < MsSX, 

l < a < N .  

The data set, f(r), lies in the rectangular base domain 

Some of the values fw(a, b)  for 1 < a < Ndepend upon valuesf(r) which lie outside 
the original base domain, and depend upon how the functional values are continued. 
For example, methods based upon Fourier series (such as the FFT) assume 
periodicity to extend f ( r )  into the exterior region. To be free from spurious 
continuations, we must ask in what domain (a ,  b)  isfw(a, b)  entirely dependent upon 
f(r) within the original domain [rX, rz] .  The value $(ro) will influence fw(a, b)  in a 
domain [b,, b,] bounded by lro-bl/a = O(1) which is a cone of nominal radius a 
extending upward from ro. So the boundaries of the original base domain 
[l,N] x [1,M] will influence fw(a, b)  for b outside the domain [a,N-a] x [a/s,M-a/s]. 
For this reason, the value of amax must be chosen to leave a sufficiently large 
domain [b,, b,]. We have chosen a,,, = I$ w 100. All values fw(a, b)  lying within 
[umax,N-amaX] x [amax/~,M-amax/~] are determined by the original data set, for all 
values of a in [ 1 ,  amax]. The data are sufficient to examine the scale parmeter a over 
roughly seven octaves, and according to (22), a total of approximately 11 2 values arc 
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FIGURE 6. Sections of the modulus of the transform through the spanwise position of the defect at &/A, = 
0.6: (a) case I; (b) case 11; (c) case 111. The three bars refer to a, = 17.56,2a, = 35.12, 4u, = 70.24. The 
smallest scales are at the top of each cqlour graph. 

FIGURE 7. Modulus for &/A, = 1.2 (see caption to figure 6). 

DALLARD & BROWAND (Facing p.  350) 
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FIGURE 8. Modulus for RnIA, = 1.8 (see caption to figure 6). 

FIGURE 9. Modulus for f i l l ,  = 3.0 (see caption to figure 6). 

DALLARD & BRGWAND 

Plate 2 
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needed - spaced logarithmically from 1 to 100. The scale a, associated with the 
fundamental pattern is a, = 17.56. The subharmonic will appear at  2a, = 35.12, and 
the subharmonic of the subharmonic a t  4a, = 70.24. In the following calculations, we 
have distributed 90 values of scale a between a = 10 and 95. 

4. An overview of downstream development utilizing the wavelet 
transform modulus 

4.1. Visualizutions 
The colour plates 1 and 2 - figures 6-9, representing the three distinct forcings - are 
sections of the modulus of the transform (NSX x mSa,/a, 65sSX) for different 
downstream stations. The cuts M = 65, are made through the spanwise position of 
the original defect. (Recall that SX is the time interval 6X = USt.) Four identical 
downstream stations are displayed for each forcing condition. Consider case I 
containing no explicit subharmonic forcing. Tnitially, the scale is strongly localizcd 
at a = 17.56, corresponding to the forcing a t  fi. (Scale a = 16.0 corresponding to fi 
does appear, but only in a localized region of span not displayed here.) The defect is 
the region of diminished amplitude in figure 6 (a). The modulus must bc exactly zero 
a t  the centre of the defect to avoid an unphysical singularity (cf. Berry 1980). The 
initial distributions of scale are similar for the two other forcings, figure 6(b ,  c), 
although there does exist wave energy a t  the subharmonic scale. The downstream 
development is quite different for the three cases. With no subharmonic forcing, 
figures 7 (a ) ,  8 (a) ,  9 (a )  show a dramatic increase in the large scales in the vicinity of 
the defect. The scale cascade is centred roughly a t  the scale associated with the 
subharmonic, but it is clearly a broadband process. The subharmonic forcing a t  +fi 
(case 11), which might be termed a localized subharmonic forcing, accentuates the 
scale transition in the defect region, figures 7 ( b ) ,  8 ( b ) ,  9 ( b ) .  Here the scale change is 
more closely centred a t  the subharmonic, the physical size of the subharmonic region 
is larger, and the relative amplitude of the growing subharmonic is greater. 
Compare, for example, the subharmonic colour contours with those of the 
fundamental scale far from the defect. I n  contrast, the application of subharmonic 
forcing a t  $j2 and u, (case I T T ) ,  which might be termed a global application of 
subharmonic forcing, suppresses the role of the defect. The transition to larger scales 
takes place nearer the origin than for cases I and II, but the defect region remains 
relatively undistinguished. One interesting feature not present in the other cases is 
the formation of a new defect region in the subharmonic pattern. It is represented by 
the ‘hole ’ in subharmonic amplitude just downstream of the original defect region in 
figures 7 ( c ) ,  8(c).  The subharmonic defect can be weakly discerned at the first 
downstream station, figure 6(c),  and may have been introduced by the forcing, 
although it was not planned. It appears possible to introduce defects at several 
scales, and to have them grow t o  a dynamically significant strength a t  different 
downstream positions. 

4.2. Estimates of average scale 
I n  an effort to be more precise about the range of scales in the defect region, the 
following procedure is adopted. A roughly square area (IOT, x 12A,) centred upon the 
original defect contains the most energetic portions of t h e  flows. A t  each point, the 
wavelet transform modulus is scanned in the ‘a’ direction to find the scale which 
maximises I f w l .  These scale values are averaged over the area to give the means 
plotted in figure 10 as a function of downstream position. 
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0 1 2 3 4 

Downstream position, Rx/h ,  

FIGURE 10. Evolution of the scales in the defect region: 0, case I ;  0 ,  case 11; 0 ,  case 111. 

The significant scales are plateaux connected by sharp transitions in scale. With no 
subharmonic forcing, the development of the subharmonic is least well organized. 
The first transition is to an average scale which is approximately 20 % greater than 
the scale corresponding exactly to the subharmonic. Thereafter the scale continues 
to increase slowly. For cases I1 and I11 the forcing reorganizes the pairing around a 
particular scale a close to 2 x a2 w 32 (as can be observed in figures 6-9). For case I1 
forcing, a second transition to the scale corresponding roughly to 4 x a, z 64 takes 
place. Forcing globally at the subharmonic creates a rapid transition to scales which 
are 20-30% larger than 4u, = 72.24 - reminiscent of the (unforced) transition in 
case I. The averaged wavelet scales associated with this last transition are only 
approximate, since it is clear from figure 9(c)  that some of the scale information at  
this station (and beyond) lies outside the domain of the transformed results. Longer 
data records would be needed to examine larger values of a (cf. $3.4). 

5. Distributions of energy density and excess energy density 
The visualization in $4.1 can be given more precision with the aid of the definition 

of energy density. First consider the externaE region far from the defect, where the 
field is spatially uniform. Since the velocity fluctuation data are normalized by these 
external r.m.s. values, the total energy density in this region is exactly unity. That 
is 

The partition of energy density among three non-overlapping scale intervals - 
centred at  the fundamental (a,), subharmonic (2a1) and subsubharmonic scales (4a1) 
- are shown in figure 11 (a-c) for the three forcing cases. These densities are defined 
by 
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Case I(a) 93 88 90 99 94 92 70 
85 88 91 95 93 94 90 Case XI (b) 

Case lIl(c) 100 95 93 98 99 96 97 
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FIGURE 11. Partition of energy density outside of the defect region : (a )  case I ; ( b )  case I1 ; (c) case 
111, 0, Energy density in fundamental band; A, subharmonic band; 0, subsubharmonic band. 
Table insert gives the 3-band energy sum. 
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(As motivation for choosing these particular upper and lower bounds, note that the 
wavelet transform of a monochromatic function e ~ p ~ ~ z ~ ~  is a Gaussian function of the 
scale a only, centred around a1 = k,/lcl, cf. figure 12. The energy is almost totally 
distributed between the scales al -fal and a, +$at.) A table containing the three-band 
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FIGURE 15a-e. For caption see facing page. 
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FIGURE 15. As figure 13 but for case 111; note the expanded vertical scale 0-49. On a further 
expanded scale: (4) Rz/h,  = 0.6; (Q) Rx/h, = 1.8. 

energy density sum, as a per cent fraction of the total energy, is also given for each 
of the downstream positions. The three bands are seen to capture the bulk of the 
energy in the region far from the defect, except at the most extreme downstream 
stations. Transfer of energy to even larger scales is probably responsible for these 
decreases. For case I, the energy sum fluctuates between 0.9 and 1.0 at the first few 
downstream stations. Since we have no explanation for these fluctuations, the 
variation can probably be taken as a measure of the reliability of the wavelet 
transform technique applied to this data set. In  the region near the defect, the signal 
levels are higher, and the reliability should be at least as good. 

Indeed, the large velocity fluctuation energies in the immediate vicinity of the 
defect are more interesting. For the purpose of isolating a particular area, an excess 
energy density is defined as the ratio of energy density in the subharmonic and 
subsubharmonic bands at a particular point, to the total averaged energy density in 
the external region. That is 

This quantity is displayed as the vertical coordinate versus (NSX xMsSX) in figures 
13 and 14 for cases I and 11. Each figure contains the excess energy density for the 
five downstream stations corresponding to Rxlh, = 0.6, i.8, 2.4, 3.0, and 3.6. The 
vertical scale in figures 13 and 14 extends from 0 to 780. With no subharmonic 
forcing, there is a rapid dramatic increase in excess energy at large scales in the 
vicinity of the original defect region, followed by a decrease. Physically, the presence 
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of the defect promotes an early transition to larger scales by a localized pairing of 
vortices.? Rut pairing also takes place away from the defect, and because of this the 
excess energy density begins to decrease beyond Rxlh, = 2.4. As a reference, pairing 
takes place in an unforced mixing layer a t  about Rx f A, FZ 2.0, and in a mixing layer 
forced at a single fundamental frequency a t  about Rx/h, = 2.5-3.0. Forcing locally 
a t  the subharmonic frequency promotes an early and more dramatic transition. At 
Rx/h, = 1.8 (figure 14b), the region of significant excess energy is largely coincident 
with the region of applied forcing. By Rx/h, = 2.4, a subregion nearest' the defect 
clearly dominates. The peak values of excess energy here are impressive - they are as 
much as a factor of 500-700 greater than the external energy density. These 
enormous diff'erences must be put in perspective. The measurements are made along 
the ray y/x = 0.15. I n  the defect region, where scales are larger, the measurement 
point is close to the vortex centres and the measured amplitudes are larger than in 
the external region where vortices are smaller (and farther removed from the 
measurement point). This geometrical difference accounts for a t  least some of the 
difference in wavelet amplitudes. Energy density values averaged over' the entire 
vertical extent of the mixing layer would not show differences of 5W700 between 
the defection region and the external region. 

With global subharmonic forcing, the situation is more complex, and is illustrated 
in figure 15. Note the much expanded vertical scale, 0-50, The initial growth of 
excess energy a t  the subharmonic scale can be seen in ( 6 )  and on a more expanded 
scale in (9). It is a slightly raised plateau preceeding the defect in time - the cross- 
section can be seen in figure S(c). The important increases in excess energy take place 
farther downstream, figure 15 (d, e ) ,  and are associated with subsubharmonic scales. 

There is a certain consistency among the three cases. With no subharmonic 
forcing, the defect region is the site of an explosive growth of large scales (the site of 
localized pairing). A localized subharmonic forcing accelerates and magnifies the 
result. With global subharmonic forcing, the original defect has practically no 
dynamical significance since a global vortex pairing is promoted. Examination of the 
phase portraits for the three cases (not shown), indicates that no defects appear in 
any of the subharmonic patterns a t  the site of the original defect. The original defect 
has not survived the scale transition (pairing). It comes closest to surviving for case 
I11 in the following sense. During the first global pairing, the original defect site 
contains less energy a t  the subharmonic scale (cf. figures 15g and 8c) .  The weakness 
in amplitude in this region persists and promotes the transition to  larger scales 
farther downstream. The defect which does appear in case 111, as mentioned earlier, 
occurs considerably later in time, and is probably a result of the initial forcing (cf. 
figure 6c). The significant growth in excess energy for case I11 shown in figure 15(d) 
is thus a combination of the presence of this secondary defect, and the region of 
subharmonic weakness in the vicinity of the original defect. 

Finally, as a means of summarizing the information contained in figures 13-15, an 
averaged excess energy is defined. A spatial extent for the subharmonic region is set 
by fixing a threshold value for the excess. Figure 16(u+) give the excess energy 
densities averaged over the regions defined by the thresholds 2 x , 4 x , 10 x . 

t If one imagines a broad band of  subharmonic disturbances to be iinstable, this band is least 
suppressed by the presence of the fundamental in the vicinit,y of the defect where the fundamental 
has the lowest amplitude. The nonlinear suppression mechanism was noted by Coullct,, and 
explored in more detail in Yang (1990), Yang et nl. (1993). 
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FIGURE 16. Excess energy density as a function of normalized downstream distance : 
(a )  threshold = 2; ( b )  threshold = 4; (c) threshold = 10. 0,  case 1 ;  0 ,  case 11; 0, case 111. 

6. Geometry of the subharmonic ‘patches’ 
6.1. Patch polanform 

The shape or planform of a subharmonic patch containing excess energy density 
greater than l o x  is shown in figure 17. This is case I,  and the patch is entirely 
contained within the measurement domain. It develops a roughly symmetrical 
planform having a rounded bow and a flat trailing edge. (Remember though, the 
patch is a space-time image, not a true 2-space image. The vertical coordinate is time 
the lateral coordinate is space. Also, the scale in figure 17 is distorted - the lateral 
scale must be multiplied by a factor of 2.9.) For case 11, the situation is complicated 
because the patch reaches the lateral measurement boundaries. The geometry has 
little meaning in this case, but it is clear that the patch containing subharmonic 
forcing grows much more rapidly in the spanwise direction. 

Numbers representing patch areas are plotted in figure 18 for several thresholds. 
Planform area is expressed in units of (q x AJ, and the rates of increase of area reflect 
the explosiveness of the process. The insert in figure 18 shows patch area for case I 
- no subharmonic forcing - plotted in log-log coordinates for the three thresholds. 
Between the beginning of growth and the maximum area location near Rxlh, = 2.5, 
the slope is close t o  two, indicating patch area growing proportional to the square of 
downstream distance. 

6.2. Relative movementlrate of extension 

The relative locations of the centroids of the growing subharmonic regions with 
respect to the convected position of the original defect are plotted in figure 19. The 
centroid is defined as 

(32) 
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FIGURE 17. Representation of the area with an excess energy density above 10 (case I). The vertical 
axis iu time, the horizontal axis is span. (a) Rx/h, = 1.5; (h )  Rx/hl = 1.8; (c) R x / ~ ,  = 2.1 ; (4 
Rzlh, = 2.4; ( e )  RxIA,  = 2 .7 ;  (f)  Rxlh, = 3.0; (9)  Rxlh, = 3.3; (h)  Rxlh,  = 3.6. 
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FIGURE 18. Value of the area containing excess energy density above the indicated thresholds 2 x , 
4 x , 10 x . 0, case I ; 0, case I1 ; 0,  ease 111. Insert shows area versus incremental downstream 
distance in log coordinates. The line has slope 2. a, Threshold 2 x ; , 4 x ; A, 10 x . 
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&,(a, 4, tJ2- > threshold = 2. %, j  = - (33) 

Since these quantities are weighted by the energy density, they tend to reflect the 
small central peak within the patch, and are not sensitive to the presence of the 
lateral boundaries. For as long as the original defect is visible in the pattern, it 
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FIGURE 20. Second moments of the centroid of the area containing excess energy density above the 
indicated thresholds. Case I :  0---0---, t , ;  0-0-0, 2,. Case 11: 0---0--- > t r 3  . 
0- -0-0, z,. 

remains within a wavelength or two of the initial span position and advects 
downstream with the mean speed 0. This behaviour is assumed throughout. With no 
subharmonic forcing, the centroid of the patch is initially slightly displaced from the 
defect, and there is little change farther downstream. For case T I ,  there is much 
greater lateral motion. The motion is the result of the patch originating in the 
subharmonic domain to one side of the defect, then moving rapidly toward the peak 
region visible in figure 14(c). This point is approximately eight wavelengths to the 
right of the original defect. 

A measure of the rapidity of growth in the span and time directions can be 
obtained by estimating the second moments about the centroid. That is 

Plots of these two quantities for several thresholds are given in figure 20. The time 
coordinate has been converted to a space coordinate by multiplication with U ,  and 
the vertical axis is expressed as fractions of the wavelength A,. Perhaps the most 
interesting information is contained in the initial rates of growth in both the 
longitudinal (time) direction and the span direction obtained from the slopes of the 
various curves in figure 20. The expressions for rates of growth are 

Atg = m, A, A(Rx/A,)  = rn, RAx, A.zg = m,RAx,  (36) 



Crowth of large scales at defect sites in the plane mixing layer 363 

Fundamental pattern Pattern with local subharmonic +f2 

(case I) (case 11) 

Longitudinal Spanwise Longitudinal Spanwise 
Threshold extension rate extension rate extension rate extension rate 

2 x  0.70 1.06 0.40 2.04 
4 x  0.78 1.24 0.67 3.10 

10 x 0.92 1.52 0.58 3.29 

TABLE 1. Rates of patch spread, T J J Q ,  WU/D 

where the m are the least-squares linear slopes estimated over the first four 
downstream stations. The growths in t, and z, are sensibly linear over this range, and 
have slopes of approximately & 10 YO accuracy. Linear growth in t ,  and z, again 
supports the conclusion that patch area N t u x ,  grows as the square of downstream 
distance. 

Alternatively, two velocities can be defined : 

At,/At = U, = m,R A x l A t ,  (37) 
Az,/ At = W, = m, R Ax/  At,  (38) 

U,/O = m, R ,  W , / 0  = mp R .  (39) 

giving in the convected frame, A x / A t  = 0, 

These velocity ratios are listed in table I as a function of threshold and forcing 
condition. There is a consistent trend for the rates of extension to increase with 
increasing threshold. But these weighted rates of extension are dominated by the 
large values of excess energy density near the defect, and are consequently not strong 
functions of the threshold for the thresholds used. 

The ratio of spanwise extension to longitudinal extension is esaentially independent 
of threshold. For the fundamental pattern (case I), the ratio is 1.5810.08. In effect, 
the subharmonic region spreads 60% faster in the span direction. The spreading 
rates (or velocities) are reasonable fractions of the characteristic convection velocity 
l7. The fact that W, is greater than U, implies a lack of shape similarity for the 
growing patch. The patch is preferentially elongating in the spanwise direction, i.e. 
becoming more two-dimensional. The shape changes may not be so evident in figure 
17, but the calculation of the weighted variances t,, z, should be regarded as the more 
reliable indicator. The quantity W,/a can also be interpreted as the half-angle for 
lateral spread of the patch. This angle is approximately 5 2 O f  Fi", and depends only 
weakly on threshold. The largeness of the angle again reflects the explosiveness of the 
process and the tendency of the resulting structure to become ' two-dimensionalieed '. 

The spreading patch can be compared with a theoretical linear theory estimate by 
Balsa (1989). Balsa has determined the linear (Green's function) response to a point 
force in the vertical direction applied to a region of constant vortioity between two 
parallel streams. The response is a localized wave packet containing waves near the 
most unstable wave. Balsa finds the area of the disturbed region to grow - t2 in a 
coordinate system moving with the group velocity (or N cr2, from some arbitrary 
fixed origin). The lateral spread, or spanwise extension using our present 
nomenclature, is predicted to be 

A z / A x  E 1.OR. 
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The result is a half-angle prediction of approximately 27" for the lateral spread rate, 
or about half the measured angular spread rate of our patch. The two physical 
situations are different, of course, and there is no reason to expect close agreement for 
the two spreading rates. The model linear problem does suggest that relatively large 
angles for the spreading rate can be anticipated. Yang et al. (1992) show that the 
patch spreading rate can be closely matched by a proper tuning of model equations 
describing the nonlinear process. 

With the imposition of subharmonic scales locally, the rate of spread in the span 
direction is just about doubled, while the longitudinal extension rate is decreased by 
about 30%. The ratio W,/CT, is considerably increased to 5.1 k0.5. 

7. Concluding remarks 
The most important conclusions to come from the present study relate to the relative 
dominance of two-dimensional and three-dimensional aspects of the flow. The 
defects, which arise naturally in the flow, serve as nuclei for further change. Pairing 
is first initiated here, and results in a broadband transition to larger scales. The size 
of the affected region grows more rapidly in the span direction than in the stream 
direction, thus preserving a certain tendency toward two-dimensionality. To gain an 
appreciation of the significance of the rates of area increase shown in figure 18, the 
following example is given. In a downstream distance RAxlA, x 2.5, which is 
characteristic of the generally accepted distance required to complete the pairing 
interaction, the area of the patch with excess energy 10 x (case I) has grown from 
zero to about 200 (q x Al).  If defects were randomly sprinkled in time throughout the 
mixing-layer span a t  the plate trailing edge, an initial average density of 5 x lod3 in 
(T,  x A,) would be sufficient to fill the planform with paired vortices in the same 
downstream interval (RAx/Al = 2.5) .  Since the measured initial density of defects is 
1-2 x 1 V 2  in (q x A,) (Browand & Prost-Domasky 1990), the mechanism of large- 
scale growth a t  defect sites seems rapid enough to account for the pairing transition 
in its entirety. Figure 21 is a crude planform portrayal of how the process might be 
imagined to function as pairing is initiated a t  many sites along the span. Here we 
have converted the measured x- t  images into z-x images. This is not correct in detail, 
but by estimating the z-t-x envelope containing the patch, we were able to convince 
ourselves that the qualitative planform shape in z-x would be similar to the z-t 
observations. The original defect is observed to disappear once the subharmonic 
transition takes place, but additional defects can be expected at the boundaries of 
patches arising from competing sites. Thus the process is envisioned to continue 
through a succession of generations. 

Forcing locally a t  the subharmonic frequency if2 accentuates the three- 
dimensionality of the patch growth process by significantly increasing the excess 
energy density, but it also hastens the completion of the process by increasing the 
lateral spreading rate. Forcing globally at the subharmonic frequencies ul and g2 
renders the original defect ineffective. I n  fact global subharmonic forcing creates in 
the region of the defect a diminished subharmonic amplitude, which in the 
Etucceeding generation behaves as if it  were a defect. In  addition, several generations 
of defects can be introduced by the initial forcing. This apparently happened 
inadvertently for the case of global subharmonic forcing. 

I t  remains to discuss how these results might be integrated with what is presently 
understood about the large-scale dynamics (pairing) in mixing layers. Pairing has 
traditionally been viewed as a two-dimensional, or more appropriately a quasi-two- 
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k- RAx/A, = 2.5 -4 
FIGURE 21. Planform sketch of mixing layer illustrating patches growing from 

numerous defect sites to fill the surface. Not to scale. 

dimensional, process. The term quasi-two-dimensional is taken to mean that the 
physical mechanism is a two-dimensional one. Of course, for naturally developing 
(unforced) mixing layers, pairing interactions are always three-dimensional, but no 
three-dimensionality need be involved to understand the process. Pierrehumbert & 
Widnall (1982) demonstrated mathematically that the subharmonic instability of a 
row of Stuart vortices was maximized for two-dimensional disturbances. They also 
showed that typical amplification rates for three-dimensional modes were only 
slightly smaller for wave vector angles less than about 45’. Thus the instability is 
broadband with regard t o  the orientation of the subharmonic disturbance. 
Disturbance e-folding distance, Rxlh , ,  was of the order of unity, resulting in a rapid 
growth of any initial, imposed perturbation. The two facts together suggest that 
there are many transition scenarios depending upon the relative magnitudes of two- 
and three-dimensional initial disturbances. The experimental work of Lasheras, Cho 
& Maxworthy (1986), Lasheras & Choi (1988), and the numerical experiments of 
Corcos & Lin (1984) lend support to the multiple scenario viewpoint. Rogers & Moser 
(1992) and Moser & Rogers (1993) have recently discussed several scenarios in great 
detail utilizing direct numerical simulation (DNS). 

To these multiple scenarios, we have added an additional one, which is inherently 
three-dimensional. It is the amplification of a broad band of larger scales in the 
vicinity of a defect in the pattern of the fundamental. I t  may be likened, as 
Williamson (1992) suggests in a related context, to the development of a turbulent 
spot in a laminar boundry layer. In describing boundary-layer transition, distinc- 
tion is often made between routes stemming from an organized wave field- 
Tollmien-Schlicting waves and subharmonics - and the route described by the 
confluence of disturbances arising from isolated turbulent spots. The same distinction 
may be appropriate for unbounded shear flows, although the analogy is not perfect. 

The estimate in the first paragraph above has shown that pairing arising from 
pattern defects is sufficiently rapid to account completely for the transition to-larger 
scales. But pairing also takes place in the absence of such isolated nucleii. ‘Natural 
transition’ can be expected to depend upon both processes. It is probably impossible 
to describe natural transition without a proper characterization of the initial 
disturbance field. 

None of the existing direct numerical simulations of mixing layers have detected 
the three-dimensional structure described here. This is understandable. In almost all 
calculations, initial conditions are composed of a combination of two-dimensional 
modes and spanwise periodic three-dimensional modes. Such initial conditions 
exclude the possibility of pattern defects. It would be interesting to introduce defect 
structure as an initial condition, and to follow the downstream evolution numerically. 
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The wavelet transform has proved to be a useful tool for quantifying the localized 
transition. But a physical understanding is still incomplete. We do not know, for 
example, how vortex lines link up within the expanding subharmonic region. Nor do 
we understand the precise mechanism of spreading. In a companion project, Yang 
et aE. (1993) have compared 2-space + time numerical calculations, based upon a 
nonlinear evolution equation model, with some of the data presented here. (The 
vertical coordinate is suppressed in the simulations, making them simpler than DNS 
solutions.) Qualitatively, the behaviour near defect locations appears strikingly 
similar to the experiment. These comparisons provide physical insight, and the hope 
of a useful predictive capability for shear flows which respond strongly to  small levels 
of forcing. In  the future, such intercomparisons must focus on quantitative details. 

Features like those described here have been observed by other researchers, for 
example by Nygaard & Glezer (1991). Similar features also arise in other, related 
geometries, the most notable to date being the cylinder wake at lower Reynolds 
numbers, as in Provensal, Mathis & Boyer (1987), Van Atta & Gharib (1987), Van 
Atta  & Piccirillo (1990), Piccirillo & Van Atta (1993), Eisenlohr & Eckelmann (1989), 
Lewis & Gharib (1992), and Williamson (1989, 1992). Williamson (1992), in an 
elegant experiment, demonstrates that the presence of a small localized ring, placed 
upon an otherwise two-dimensional cylinder at Reynolds numbers of about 200, 
generates defects in the downstream vortex structure. Each defect region grows into 
a large-scale A-structure encompassing many shed vortices. The spread of the A- 
structure is likened to the growth of a turbulent spot in a laminar boundary layer. 
At  Reynolds numbers exceeding 280, A-structures form throughout the span of the 
flow spontaneously, without the need for the small ring. It is hoped that a more 
explicit connection can be provided between these various experiments. 

A related issue is the presence of increased levels of small-scale turbulent activity 
in the vicinity of defects. The present experiment was not meant to  explore the 
production of small scales, but the work of Williamson (1992), of Nygaard & Glezer 
(1991), and of Ho et al. (1991), demonstrate important linkages between large-scale 
behaviour and small-scale fluctuations. These linkages could be strengthened by 
additional experimental work. 

This work was supported by ONR Fluid Mechanics Program, under the University 
Research Initiative. We are indebted to S. Legendre and P. Taniguchi, who were 
responsible for collecting the bulk of the data discussed here. We are particularly 
indebted to G. R. Spedding. Not only was he instrumental in formulating the 2-D 
wavelet transform used, but his expertise was utilized repeatedly in the formatting, 
processing, and plotting of data. 
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